ISEMP Objectives

Subbasin-scale

- Programmatic coordination, design, planning and implementation
- Indicators and metric development and testing
- Protocol development, refinement and testing.
- Sampling design development and testing
- Effectiveness and status and trend monitoring experimental design and implementation

Program-scale

- Evaluation tools development and testing
- Data management tools development and testing

ISEMP Objectives

Subbasin-scale

- Programmatic coordination, design, planning and implementation
- Indicators and metric development and testing
- Protocol development, refinement and testing
- Sampling design development and testing
- Effectiveness and status and trend monitoring experimental design and implementation

Program-scale

- Evaluation tools development and testing
- Data management tools development and testing

habitat monitoring protocol comparison

- compare protocols from 9 different programs
 - PIBO, AREMP, EMAP/EPA, ODFW, WDE, CDFG, R6, Wenatchee....
- make comparisons at 12 reaches 4 step-pool, 4 pool-riffle, 4 planebed complexes
- LiDAR taken at all 12 sites
- compare to intensive survey, i.e. "truth"

South Fork IMW OSU/BOR

Evaluate push-up dams as barriers to juvenile RBT movement and ultimately production

Indexing carrying capacity of salmonids on the basis of longitudinal stream temperatures

Factors that Affect Stream **Temperature** Channel Morphology Gradient/Sinuosity Bank Erosion Stream/Floodplain Connection Hydrology Channel Width/Depth Channel Geometry Flow Volume/Regime Substrate Shear Velocity Point Sources Near Stream Withdrawals/Augmentation Hyporheic Flows Vegetation Sedimentation Vegetation Condition/Type ·Effective Shade Floodplain Roughness Bank Stability Microclimate

(Many of these parameters are interrelated)

Summer 2005 Study Area South Fork John Day Basin, OR

Summer Growth Rates (mm/day)

A Food-Based Approach to Assessment of Habitat Quality for Drift-Feeding Salmonids

Nicholas Weber
Utah State University
Aquatic Watershed and Earth Resources

Nicolaas Bouwes Ecological Research Inc.

Habitat Monitoring and Assessment

Commonly Monitored Habitat Attributes

- Sediment
- CoverPool depth
- Temperature
- Macroinvertbrates

Water Quality

Assessment

- Fish Production: Response many habitat factors
- Availability: Highly variable across time and space
- Cost: High cost for invert sample processing

Project Objectives

- Establish a relationship between prey resource metrics and fish production
- Evaluate sources of variability in field sample collection
- Develop cost-effective approaches to sample processing activities
- Develop a protocol that will be easily adopted into current monitoring programs

Relating prey resources to fish production Juvenile Salmonid Production Project, OSU

Fish growth

- PIT-tag >8000 juvenile steelhead
- Estimates of fish density

Movement

PIT-tag detectors at 2 study sites

Habitat

• Temperature, cover, LWD, depth, pool area, substrate

Invertebrate Production Monitoring Project

Coupled drift and benthic invertebrate samples

> 400 samples across study area

Question: How does food affect production?

Relating prey resources to fish production

Relating prey resources to fish production

Bioenergetic Energy Budget

Growth = Consumption – (waste + metabolism)

(temp + size) drift Metabolism Waste Consumption (output) (inputs) Growth (field measure) terrestrials benthic

Relating prey resources to fish production

Project Objectives

- Establish a relationship between prey resource metrics and fish production
- Evaluate sources of variability in field sample collection
- Develop cost-effective approaches to data processing activities

Evaluating Variation

- Spatial extant for metric application
- Spatial and temporal noise affect precision
- Effort necessary to detect differences in prey

Evaluating Variation

Temporal Scales

Months Seasonal

Days Consecutive days

Diel: am noon pm

Evaluating Variation

Spatial Scales

Project Objectives

- Establish a relationship between prey resource metrics and fish production
- Evaluate sources of variability in field sample collection
- Assess cost-effective yet accurate approaches to sample processing

Cost Effectiveness

Sample what fish sample

• ↓ 300% process time, < 4% loss in biomass

What about other monitoring programs?

- Can drift be estimated from benthic samples?
 - Compare drift vs. benthic
 - **■** regressions
 - Rader model

ISEMP Objectives

Subbasin-scale

- Programmatic coordination, design, planning and implementation
- Indicators and metric development and testing
- Protocol development, refinement and testing
- Sampling design development and testing
- Effectiveness and status and trend monitoring experimental design and implementation

Program-scale

- Evaluation tools development and testing
- Data management tools development and testing

TMDLs – Heat Source Model

Heat Transfer Processes

Net Heat Energy Continuity,

$$\Phi_{\text{total}} = \Phi_{\text{solar}} + \Phi_{\text{longwave}} + \Phi_{\text{evaporation}} + \Phi_{\text{convection}} + \Phi_{\text{streambed}}$$

Summary

- Determine an invertebrate metric that characterizes prey availability
- Develop a cost-effective protocol that can be added to current habitat monitoring programs
- Develop a tool that uses information from current habitat monitoring programs that will:
 - Characterize current habitat status
 - Identify if temperature or food are limiting factors
 - **■** Prioritize restoration sites
 - Describe expected results from restoration

ISEMP Objectives

Subbasin-scale

- Programmatic coordination, design, planning and implementation
- Indicators and metric development and testing
- Protocol development, refinement and testing
- Sampling design development and testing
- Effectiveness and status and trend monitoring experimental design and implementation

Program-scale

- Evaluation tools development and testing
- Data management tools development and testing

Bridge Creek IMW

- Priority watershed for restoration because of high salmonid production potential
- On 303d list of impaired streams due to poor water quality (e.g. summer temperatures often exceed 27°C)
- Limiting factors include temperature, habitat quality and diversity, sediments and flows

Incision: Rapid downcutting of a channel such that it is isolated from its' floodplain

- Incision effects on habitat and ecosystem processes
 - Loss or riparian and floodplain habitat
 - Disconnect stream from floodplain habitats
 - Lowering of water tables
 - Flood flow concentration
 - Loss of perennial flow
 - Increase temperatures
 - Loss of spawning gravels
 - Decreased spawning and rearing capacity

Wet floodplain system:

- sedge meadows
- deep accumulation of sediments
- elevated water table

Incised channel:

- conversion to sagebrush
- lowered water table
- intermittent streamflow

Can incised streams be restored?

- Is the restoration action feasible?
- What does a "restored" stream look like?
- Will ecosystem processes be restored?
- Will the restoration action result in a population increase in freshwater production?
- How long will it take?

Expected response of O. mykiss

- Decrease temperature will increase growth, condition
- Increase in riparian vegetation and decrease in sedimentation will increase invertebrate production and increase fish growth and density
- Increase habitat diversity will reduce predation and susceptibility to floods
- Increase spawning gravels will increase egg survival

John Day River

Intervention Analysis

Summary

- Using ecological mechanisms to develop relevant metrics to be incorporated into monitored programs
- Testing and refining protocols to produce precise and accurate information
- Developing analytical tools to:
 - Characterize current habitat status
 - Identify limiting factors
 - To aid in restoration planning
 - Describe expected results from restoration
- Testing restoration in an experimental management framework- IMWa
 - Produce quantifiable population level response
 - Identify mechanistic relationships to aid in extrapolating results to less intensively monitored areas